Solution to a stochastic differential equation
In probability theory and statistics , diffusion processes are a class of continuous-time Markov process with almost surely continuous sample paths. Diffusion process is stochastic in nature and hence is used to model many real-life stochastic systems. Brownian motion , reflected Brownian motion and Ornstein–Uhlenbeck processes are examples of diffusion processes. It is used heavily in statistical physics , statistical analysis , information theory , data science , neural networks , finance and marketing .
A sample path of a diffusion process models the trajectory of a particle embedded in a flowing fluid and subjected to random displacements due to collisions with other particles, which is called Brownian motion . The position of the particle is then random; its probability density function as a function of space and time is governed by a convection–diffusion equation .
Mathematical definition [ edit ]
A diffusion process is a Markov process with continuous sample paths for which the Kolmogorov forward equation is the Fokker–Planck equation .[ 1]
A diffusion process is defined by the following properties.
Let
a
i
j
(
x
,
t
)
{\displaystyle a^{ij}(x,t)}
be uniformly continuous coefficients and
b
i
(
x
,
t
)
{\displaystyle b^{i}(x,t)}
be bounded, Borel measurable drift terms. There is a unique family of probability measures
P
a
;
b
ξ
,
τ
{\displaystyle \mathbb {P} _{a;b}^{\xi ,\tau }}
(for
τ
≥
0
{\displaystyle \tau \geq 0}
,
ξ
∈
R
d
{\displaystyle \xi \in \mathbb {R} ^{d}}
) on the canonical space
Ω
=
C
(
[
0
,
∞
)
,
R
d
)
{\displaystyle \Omega =C([0,\infty ),\mathbb {R} ^{d})}
, with its Borel
σ
{\displaystyle \sigma }
-algebra, such that:
1. (Initial Condition) The process starts at
ξ
{\displaystyle \xi }
at time
τ
{\displaystyle \tau }
:
P
a
;
b
ξ
,
τ
[
ψ
∈
Ω
:
ψ
(
t
)
=
ξ
for
0
≤
t
≤
τ
]
=
1.
{\displaystyle \mathbb {P} _{a;b}^{\xi ,\tau }[\psi \in \Omega :\psi (t)=\xi {\text{ for }}0\leq t\leq \tau ]=1.}
2. (Local Martingale Property) For every
f
∈
C
2
,
1
(
R
d
×
[
τ
,
∞
)
)
{\displaystyle f\in C^{2,1}(\mathbb {R} ^{d}\times [\tau ,\infty ))}
, the process
M
t
[
f
]
=
f
(
ψ
(
t
)
,
t
)
−
f
(
ψ
(
τ
)
,
τ
)
−
∫
τ
t
(
L
a
;
b
+
∂
∂
s
)
f
(
ψ
(
s
)
,
s
)
d
s
{\displaystyle M_{t}^{[f]}=f(\psi (t),t)-f(\psi (\tau ),\tau )-\int _{\tau }^{t}{\bigl (}L_{a;b}+{\tfrac {\partial }{\partial s}}{\bigr )}f(\psi (s),s)\,ds}
is a local martingale under
P
a
;
b
ξ
,
τ
{\displaystyle \mathbb {P} _{a;b}^{\xi ,\tau }}
for
t
≥
τ
{\displaystyle t\geq \tau }
, with
M
t
[
f
]
=
0
{\displaystyle M_{t}^{[f]}=0}
for
t
≤
τ
{\displaystyle t\leq \tau }
.
This family
P
a
;
b
ξ
,
τ
{\displaystyle \mathbb {P} _{a;b}^{\xi ,\tau }}
is called the
L
a
;
b
{\displaystyle {\mathcal {L}}_{a;b}}
-diffusion.
SDE Construction and Infinitesimal Generator [ edit ]
It is clear that if we have an
L
a
;
b
{\displaystyle {\mathcal {L}}_{a;b}}
-diffusion, i.e.
(
X
t
)
t
≥
0
{\displaystyle (X_{t})_{t\geq 0}}
on
(
Ω
,
F
,
F
t
,
P
a
;
b
ξ
,
τ
)
{\displaystyle (\Omega ,{\mathcal {F}},{\mathcal {F}}_{t},\mathbb {P} _{a;b}^{\xi ,\tau })}
, then
X
t
{\displaystyle X_{t}}
satisfies the SDE
d
X
t
i
=
1
2
∑
k
=
1
d
σ
k
i
(
X
t
)
d
B
t
k
+
b
i
(
X
t
)
d
t
{\displaystyle dX_{t}^{i}={\frac {1}{2}}\,\sum _{k=1}^{d}\sigma _{k}^{i}(X_{t})\,dB_{t}^{k}+b^{i}(X_{t})\,dt}
. In contrast, one can construct this diffusion from that SDE if
a
i
j
(
x
,
t
)
=
∑
k
σ
i
k
(
x
,
t
)
σ
j
k
(
x
,
t
)
{\displaystyle a^{ij}(x,t)=\sum _{k}\sigma _{i}^{k}(x,t)\,\sigma _{j}^{k}(x,t)}
and
σ
i
j
(
x
,
t
)
{\displaystyle \sigma ^{ij}(x,t)}
,
b
i
(
x
,
t
)
{\displaystyle b^{i}(x,t)}
are Lipschitz continuous.
To see this, let
X
t
{\displaystyle X_{t}}
solve the SDE starting at
X
τ
=
ξ
{\displaystyle X_{\tau }=\xi }
. For
f
∈
C
2
,
1
(
R
d
×
[
τ
,
∞
)
)
{\displaystyle f\in C^{2,1}(\mathbb {R} ^{d}\times [\tau ,\infty ))}
, apply Itô's formula:
d
f
(
X
t
,
t
)
=
(
∂
f
∂
t
+
∑
i
=
1
d
b
i
∂
f
∂
x
i
+
v
∑
i
,
j
=
1
d
a
i
j
∂
2
f
∂
x
i
∂
x
j
)
d
t
+
∑
i
,
k
=
1
d
∂
f
∂
x
i
σ
k
i
d
B
t
k
.
{\displaystyle df(X_{t},t)={\bigl (}{\frac {\partial f}{\partial t}}+\sum _{i=1}^{d}b^{i}{\frac {\partial f}{\partial x_{i}}}+v\sum _{i,j=1}^{d}a^{ij}\,{\frac {\partial ^{2}f}{\partial x_{i}\partial x_{j}}}{\bigr )}\,dt+\sum _{i,k=1}^{d}{\frac {\partial f}{\partial x_{i}}}\,\sigma _{k}^{i}\,dB_{t}^{k}.}
Rearranging gives
f
(
X
t
,
t
)
−
f
(
X
τ
,
τ
)
−
∫
τ
t
(
∂
f
∂
s
+
L
a
;
b
f
)
d
s
=
∫
τ
t
∑
i
,
k
=
1
d
∂
f
∂
x
i
σ
k
i
d
B
s
k
,
{\displaystyle f(X_{t},t)-f(X_{\tau },\tau )-\int _{\tau }^{t}{\bigl (}{\frac {\partial f}{\partial s}}+L_{a;b}f{\bigr )}\,ds=\int _{\tau }^{t}\sum _{i,k=1}^{d}{\frac {\partial f}{\partial x_{i}}}\,\sigma _{k}^{i}\,dB_{s}^{k},}
whose right‐hand side is a local martingale, matching the local‐martingale property in the diffusion definition. The law of
X
t
{\displaystyle X_{t}}
defines
P
a
;
b
ξ
,
τ
{\displaystyle \mathbb {P} _{a;b}^{\xi ,\tau }}
on
Ω
=
C
(
[
0
,
∞
)
,
R
d
)
{\displaystyle \Omega =C([0,\infty ),\mathbb {R} ^{d})}
with the correct initial condition and local martingale property. Uniqueness follows from the Lipschitz continuity of
σ
,
b
{\displaystyle \sigma \!,\!b}
. In fact,
L
a
;
b
+
∂
∂
s
{\displaystyle L_{a;b}+{\tfrac {\partial }{\partial s}}}
coincides with the infinitesimal generator
A
{\displaystyle {\mathcal {A}}}
of this process. If
X
t
{\displaystyle X_{t}}
solves the SDE, then for
f
(
x
,
t
)
∈
C
2
(
R
d
×
R
+
)
{\displaystyle f(\mathbf {x} ,t)\in C^{2}(\mathbb {R} ^{d}\times \mathbb {R} ^{+})}
, the generator
A
{\displaystyle {\mathcal {A}}}
is
A
f
(
x
,
t
)
=
∑
i
=
1
d
b
i
(
x
,
t
)
∂
f
∂
x
i
+
v
∑
i
,
j
=
1
d
a
i
j
(
x
,
t
)
∂
2
f
∂
x
i
∂
x
j
+
∂
f
∂
t
.
{\displaystyle {\mathcal {A}}f(\mathbf {x} ,t)=\sum _{i=1}^{d}b_{i}(\mathbf {x} ,t)\,{\frac {\partial f}{\partial x_{i}}}+v\sum _{i,j=1}^{d}a_{ij}(\mathbf {x} ,t)\,{\frac {\partial ^{2}f}{\partial x_{i}\partial x_{j}}}+{\frac {\partial f}{\partial t}}.}
Concepts Applications Implementations
Audio–visual Text Decisional
People Architectures